
Numerical simulations of natural
convection around a line-source

Shihe Xin
LIMSI-CNRS, Orsay, France

Dép de Physique, Univ. Paris Sud, Orsay, France

Marie-Christine Duluc, François Lusseyran and Patrick Le Quéré
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Abstract External natural convection is rarely studied by numerical simulation in the literature
due to the fact that flow of interest takes place in an unbounded domain and that if a limited
computational domain is used the corresponding outer boundary conditions are unknown. In this
study, we propose outer boundary conditions for a limited computational domain and make the
corresponding numerical implementation in the scope of a projection method combining spectral
methods and domain decomposition techniques. Numerical simulations are performed for both
steady natural convection about an isothermal cylinder and transient natural convection around a
line-source. An experiment is also realized in water using particle image velocimetry and
thermocouples to make a comparison during transients of external natural convection around a
platinum wire heated by Joule effect. Good agreement, observed between numerical simulations
and experiments, validated the outer boundary conditions proposed and their numerical
implementation. It is also shown that, if one tolerates prediction error, numerical results obtained
remain at least reasonable in a region near the line-source during the entire transients. We thus
paved the way for numerical simulation of external natural convection although further studies
remain to be done for higher heating power (higher Rayleigh number).
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Nomenclature
Cp ¼ specific heat of working fluid at

constant pressure (J/kg K)
~C ¼ specific heat of platinum (J/kg K)
D ¼ cylinder diameter (m)
f ¼ unknown field
g ¼ gravity acceleration (m/s2)
i ¼

ffiffiffiffiffiffiffi
21

p

�I ¼ modified identity matrix
k ¼ azimuthal wave number
K ¼ maximum azimuthal wave

number
n ¼ time step
Nu ¼ average Nusselt number on the

surface of isothermal cylinder

Pr ¼ Prandtl number ( ¼n/k)
q ¼ heat flux (W/m2)
Q ¼ heat power or heat loss rate (W)
r ¼ radial distance (m)
R ¼ cylinder radius (m)
R0 ¼ radial position of the outer

boundary (m)
Raq ¼ Rayleigh number based on heat

flux ( ¼[gbqR 4] / (lnk))
RaT ¼ Rayleigh number based on

temperature difference
( ¼[gbDTD 3] / (nk))

Sf ¼ r.h.s. term of discrete equation of f
t ¼ time (s)

Computations have been performed at Centre d’Informatique National de l’Enseignement
Supérieur (CINES) under research project lim2072.
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1. Introduction
Although external natural convection has been studied in the past (similarity solutions,
experiments, etc.) (Fuji et al., 1973; Ostroumov, 1956; Schorr and Gebhart, 1970;
Yosinobu et al., 1979), it is still an unexplored domain for numerical simulation, as
there have been few numerical investigations of such flows (Farouk and Güçeri, 1981;
Kelkar and Choudhury, 2000; Kuehn and Goldstein, 1980; Linan and Kurdyomov, 1998;
Saitoh et al., 1993; Wang et al., 1990).

External natural convection takes place in an infinite fluid medium or in a fluid
medium whose size is large compared with that of the heating element. When trying to
study external natural convection by numerical simulation, sometimes one can use a
very large computational domain but most of the time one has to limit the
computational domain to a small fluid region surrounding the heating element because
considering the whole fluid medium is either impossible or too expensive. In the
pioneering works (Farouk and Güçeri, 1981; Kuehn and Goldstein, 1980), external
natural convection around a horizontal cylinder is studied numerically; the
Navier-Stokes equations in stream function-vorticity formulation are solved by
using finite differences method and inflow and outflow boundary conditions at an
artificially placed outer boundary. For an isothermal cylinder, only local Nusselt
number along cylinder surface and averaged Nusselt number are compared with
experimental measurements and used to assess the validity of numerical results. Later,
Wang et al. (1990) revisited the same problem with the same inflow and outflow
boundary conditions and pointed out that these outer boundary conditions may be only
valid in the steady conditions. As indicated in Saitoh et al. (1993), the outer boundary
conditions used in Wang et al. (1990) do not give the correct results including
streamlines and Nusselt number around the cylinder and there is no benchmark
solution for this standard problem. This led Saitoh et al. (1993) to propose benchmark

T ¼ temperature (K)
u ¼ radial velocity component (m/s)
v ¼ azimuthal velocity component

(m/s)
~V ¼ vector field
p ¼ pressure deviation from

hydrostatic pressure (N/m2)
x ¼ horizontal position (m)
y ¼ vertical position (m)

Greek symbols
b ¼ coefficient of volumetric thermal

expansion (K21)
D ¼ Laplace operator
DT ¼ Superheat on cylinder surface

(Tw2T0)
Dt ¼ time step value
1 ¼ small positive value
k ¼ thermal diffusivity of working

fluid (m2/s)

l ¼ thermal conductivity of working
fluid (W/m K)

~l ¼ thermal conductivity of platinum
(W/m K)

�l ¼ 3/(2Dt)
n ¼ kinematic viscosity of working

fluid (m2/s)
r ¼ density of working fluid (kg/m3)
~r ¼ density of platinum (kg/m3)
u ¼ azimuthal position in polar system
Q ¼
T 2 T0 ¼ superheat (K)

Subscripts and superscripts
k ¼ wave number in Fourier space
n ¼ time step
w ¼ cylinder wall
v ¼ volumetric (per volume)
0 ¼ related to initial or ambient

condition
* ¼ predicted velocity field
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solutions to natural convection around a horizontal circular cylinder by using higher
accuracy methods (fourth-order finite differences) and a solid boundary condition
placed at some 1,000-20,000 times the cylinder diameter. Recently, Linan and
Kurdyomov (1998) analytically and numerically investigated natural convection
around a line heat source at small Grashof numbers. Solutions at far-field are known
analytically; numerical solutions close to the line source are obtained by using finite
differences and far-field analytical solutions as inflow boundary conditions and they
are used to determine constants involved in analytical expressions of the near-field
solutions. Note that these numerical simulations of external natural convection (Farouk
and Güçeri, 1981; Kuehn and Goldstein, 1980; Linan and Kurdyomov, 1998; Saitoh et al.,
1993; Wang et al., 1990) have been entirely performed in stream function-vorticity
formulation.

Although using a very large computational domain can provide benchmark
solutions to external natural convection around a horizontal cylinder, obtaining correct
streamlines and reasonable results with a relatively small computational domain and
artificial outer boundary conditions still makes sense and is challenging, especially for
transient external natural convection.

Using a limited fluid region surrounding the heating element as the computational
domain gives rise to two questions. Where should we put the external boundary of the
limited computational domain? Which kind of boundary conditions must we use on the
external boundary that is both inflow and outflow? In order to answer these questions,
we proposed artificial conditions at the outer boundary of the limited computational
domain and developed a 2D spectral (Chebyshev collocation and Fourier Galerkin) time
stepping (projection) code associated with a domain decomposition technique to
perform numerical simulations of external natural convection around both an
isothermal cylinder and a line-source. The Navier-Stokes equations under
velocity-pressure formulation in polar coordinates are discretized in time by a
second-order scheme of finite differences type and in space by Fourier Galerkin method
in the azimuthal direction. In the radial direction, the circular computational domain is
divided into several sub-domains of different sizes so that away from the line-source
grids become coarser and in each sub-domain we use Chebyshev collocation method
for spatial discretisation. On the interfaces between sub-domains, a C 1 condition is
used, i.e. functions and their first normal derivatives are imposed to be continuous. The
velocity-pressure coupling is handled by projection method.

Apart from our earlier study (Duluc et al., 2003) only one work has been realized
under velocity-pressure formulation (Kelkar and Choudhury, 2000). Furthermore, most
of the earlier studies are only devoted to steady external natural convection. This is
why the present study is performed under velocity-pressure formulation and particular
attention has been paid to transient external natural convection. In Duluc et al. (2003),
we showed that, for the benchmark problem of natural convection around a horizontal
isothermal cylinder, different outer boundary conditions yielded the same Nusselt
number, but different flow structures. Steady temperature field near the cylinder is to
some extent insensitive to computational domain size, numerical methods and outer
boundary conditions. We also showed scalings with heating power in transient
external natural convection about a line-source. Owing to the lack of experimental
results, no conclusion was drawn on the flow structure in Duluc et al. (2003). This is
why we set up an experiment and measured velocity field by particle image
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velocimetry (PIV) in order to validate the numerical methods used and show the
feasibility of numerical simulation of external natural convection. The present work
focuses on the numerical methods used, numerical implementation of the outer
boundary conditions proposed, flow structure of external natural convection and
influence of computational size on flow structure. It concerns mainly transient external
natural convection around a line-source, and deals also with steady natural convection
about a horizontal isothermal cylinder.

The present paper is organized as follows. In the next two sections we will detail the
governing equations of the physical problem studied and the numerical methods
proposed. We will then give a brief description of the experiments performed for
validating the numerical methods used. Numerical results and comparison between
numerical simulations and experiments will be discussed before drawing the final
conclusions.

2. Physical problem and governing equations
We are interested in fluid motion around a horizontal heating cylinder of radius R
(Figure 1). The cylinder could be either isothermal at a constant temperature or a thin
metal wire heated at a constant power by Joule effect. At the starting time the wire is
submitted to a step of electrical current; the fluid around the wire is heated and moves
up. The working fluid (water in experiment) is considered as a Newtonian fluid of
density r, volumetric expansion coefficient b, thermal diffusivity k (thermal
conductivity l and specific heat Cp) and kinematic viscosity n. We assume that fluid

Figure 1.
External natural

convection around a
horizontal cylinder
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motion is two-dimensional and governed by the following Boussinesq equations
(Boussinesq assumption is valid) in polar coordinates:
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¼ kDT

ð1Þ

where

D ¼
›2

›r 2
þ

1

r

›

›r
þ

1

r 2

›2

›u 2
;

t is the time, u and v are the radial and azimuthal velocity components, p is the
pressure deviation from the hydrostatic pressure and T is the temperature.

In the case of an isothermal horizontal cylinder, the computational domain,
ðr; uÞ [ ½R; R0� £ ½0; 2p� and the boundary conditions on the cylinder surface
ðr ¼ RÞ are

u ¼ v ¼ 0

T ¼ Tw

(
ð2Þ

In the case of a platinum wire heated by Joule effect, in order to consider the wire
thermal inertia, equation (1) should be coupled with the heat conduction equation

~r ~C
›T

›t
¼ ~lDT þ Qv ð3Þ

where Qv, a uniform volumetric heat source, represents heat power supplied by Joule
effect. Then the computational domains for temperature and velocity are ðr; uÞ [
½0; R0� £ ½0; 2p� and ðr; uÞ [ ½R;R0� £ ½0; 2p�. Initial conditions for the problem
described by equations (1) and (3) are u ¼ v ¼ 0 and T ¼ T0: Boundary conditions on
the wire surface ðr ¼ RÞ are

u ¼ v ¼ 0

l
›T

›r

����
fluid

¼ ~l
›T

›r

����
wire

8><
>: ð4Þ

At the outer boundary ðr ¼ R0Þ the conditions are unknown and we propose the
following conditions:
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n
›

›r
þ

1

r

� �
u ¼

p

r

n
›

›r
þ

1

r

� �
v ¼ 0

8>>>><
>>>>:

ð5Þ

and

›T

›r

����
R0

¼
›T

›r

����
R021

ð6Þ

where 1, a small positive real value, will be taken as the mesh size at r ¼ R0:
Note that equation (5) is derived by assuming the balance between pressure and

friction in equation (1) and degenerating them in the radial direction (Guermond and
Quartapelle, 1998). Equation (6) means that radial derivative of temperature at the
outer boundary is equal to that at the first inner point. When compared with the
artificial conditions used earlier at the outer boundary (Farouk and Güçeri, 1981;
Kelkar and Choudhury, 2000; Kuehn and Goldstein, 1980; Linan and Kurdyomov, 1998;
Saitoh et al., 1993; Wang et al., 1990), equations (5) and (6) are linked neither to the
inflow nor to outflow at the outer artificially placed boundary. As they do not need only
a priori knowledge of inflow and outflow at the outer boundary, they need only to be
implemented once in a code without extra tests and seem to be more convenient to
transient external natural convection if they are validated.

3. Numerical methods
3.1 Time discretization
Equations (1) and (3) are discretized by a second-order time stepping of finite difference
type: nonlinear terms are treated explicitly and diffusion is treated implicitly. When
applied to an advection-diffusion equation

›f

›t
þ ~V ·7f ¼ 72f

the time scheme reads

3f nþ1 2 4f n þ f n21

2Dt
þ 2 ~V ·7f n 2 ~V ·7f n21 ¼ 72f nþ1

where Dt is the time step. This equation can be cast in a Helmholtz equation for the
unknown field f at time n þ 1:

72f nþ1 2 �lf nþ1 ¼ Sf

where �l ¼ 3=2Dt: By noting Q ¼ T 2 T0; equations (1) and (3) are discretized in time
then read for r , R:

~lD2
3 ~r ~C

2Dt

 !
Qnþ1 ¼ SQ ð7Þ

and for R , r , R0:
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kD2
3
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� �
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� �
2

3

2Dt
vnþ1 ¼

1

rr

›pnþ1
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þ Sv 2 gbQnþ1 sin u

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

ð8Þ

3.2 Spatial discretization
Spectral methods, known to be of infinite order provided that solutions to be
approached are regular, are used for spatial discretization. The periodicity in the
azimuthal direction naturally leads us to a spatial approximation based on the Fourier
series:

f ðr; uÞ ¼
XK

k¼2K

f kðrÞ exp ðikuÞ

Equations (7) and (8) are reduced to the following ð2K þ 1Þ 1D problems in r:
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kþ1

2

8>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>:

ð10Þ

It is interesting to note that in equation (10) Helmholtz equations of unþ1
k and vnþ1

k are
coupled. The coupling is alleviated by the change of variables uþ

k ¼ uk þ ivk and u2
k ¼

uk 2 ivk: Furthermore, k¼ 0; divergence free and boundary conditions lead to u0 ¼ 0 and
the momentum equation for u0 turns out to be the equation for p0.
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In order to get stretched meshes the computational domain in r is divided into
sub-domains of different sizes. Figure 2 shows a typical grid used in the case of an
isothermal horizontal cylinder. Equations (9) and (10) are then discretized in each
sub-domain by using Chebyshev collocation method (Canuto et al., 1988) and are
coupled through conditions on the interfaces between the sub-domains. In the radial
direction, in each fluid sub-domain the variables are defined at grid points which are a
mapping of the Gauss-Lobatto points [21, 1] (Canuto et al., 1988) and the platinum
wire temperature is defined on the Gauss-Radau points (Canuto et al., 1988). In each
sub-domain, discrete operators of the first and second derivatives in r are constructed
classically by differencing the corresponding polynomials of Lagrange interpolation on
the grid points and they are full matrices.

As equations (9) and (10) consist of 1D Helmholtz equations (second-order) for uk, vk

and Qk, the natural conditions on the sub-domain interfaces are that these functions are
C 1, i.e. their values and first normal derivatives are continuous. It is known that the
global discrete problem in matrix form has block-structure and that the coupling
between blocks comes from the conditions on the interfaces (Karageorghis and
Paprzycki, 1999). One may solve the global problem by a direct method, but it is more
interesting to exploit the block-structure of the global matrix: first solve the Schur
complement problem governing the unknown on the interfaces and then the
independent block-by-block problems (Smith et al., 1996). In Funaro et al. (1988),
Louchart et al. (1998) and Zanolli (1987), the Schur complement problem (continuity of
the function and its first normal derivative) is solved by iterative methods. In the

Figure 2.
Typical grid used in

domain decomposition
around a horizontal

cylinder
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present work, we used influence matrix technique or capacitance technique and a
2-iteration method to solve Schur complement problem in order to guarantee the
interface conditions: the idea is to impose Dirichlet conditions on the interfaces and
release the constraint on the first normal derivative; as there is a linear relationship
between the function values on the interfaces and the jump of its first normal derivative
through the interfaces, i.e. the Schur complement, in a pre-processing step influences
matrix (capacitance) technique that is used to construct this linear relationship by
using a complete set of canonical unit vectors of function values on the interfaces and
the Schur complement is then a inversed direct method. The solution of the global
problem can then be obtained as follows. In the first iteration, a test Dirichlet condition
is given on the interfaces and the independent block problems are solved; in the second
iteration, the jump of the first normal derivative on the interfaces is calculated, the
correction to test the Dirichlet condition is recovered by doing matrix-vector product
between the inversed Schur complement and the derivative jump on the interfaces and
the right solution of the global problem is finally obtained by solving the independent
block problems with the corrected Dirichlet condition on the interfaces.

Note that in the case of a platinum wire equations (9) and (10) are coupled through
the temperature condition at r ¼ R which implies energy conservation and takes the
following form:

l
›Qk

›r

����
fluid

¼ ~l
›Qk

›r

����
wire

ð11Þ

This condition couples the solid platinum domain with the first fluid sub-domain and
can also be considered as an interface coupling between the sub-domains. It is,
therefore, part of the Schur complement of the global temperature problem.

3.3 Velocity-pressure coupling
Divergence free flow field can be obtained either by Uzawa methods (Bernard and
Maday, 1992; Canuto et al., 1988) or by projection method. We will detail in the
following the implementation of the condition (5) in the scope of a projection method
consisting of two steps.

In the first step (prediction), we solve the momentum and energy equations (9) and
(10) by dropping the divergence-free condition and using the pressure field p n instead
of pnþ1

k : We then obtain Qnþ1
k and a predicted velocity field u*

k; v
*
k

� �
which is not

divergence free. The corresponding outer boundary conditions to be used are:

›Qnþ1
k

›r

�����
R0

¼
›Qnþ1

k

›r

�����
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n
›

›r
þ

1

r

� �
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k ¼ 2
pn

k

r
2

pn21
k

r

n
›

›r
þ

1

r

� �
v*

k ¼ 0

8>>>>>>>>><
>>>>>>>>>:

ð12Þ

Note that the pressure field is extrapolated at the time step n þ 1:
The second step consists of projecting u*

k; v
*
k

� �
on the divergence free sub-space and

we therefore, solve for k – 0
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� �
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where �I is a modified identity matrix whose first element is equal to zero in order to
consider the fact that on the wire surface u*

k ¼ 0: On the outer boundary ðr ¼ R0Þ we
impose:

pnþ1
k 2 pn

k

r
¼ 2

ik

r
v*

k 2
pn

k

r
ð14Þ

which is obtained from equation (5) and the continuity equation.
Equation (13) is discretized in each sub-domain and, apart from the sub-domain

adjacent to the wire surface, equations to be solved are Poisson equations. Dirichlet
conditions are imposed on the sub-domain interfaces and the Schur complement is
used, in the same way as for velocity and temperature, to recover the continuity of the
first normal derivative of the pressure correction on the interfaces.

4. Experimental set-up
As mentioned in the “Introduction” there are few numerical simulations of external
natural convection due to unknown external boundary conditions and no experimental
measurements of velocity field available. The validation of the numerical methods and
the external boundary conditions proposed suffers from the lack of results to be
compared with. This is why we conducted our own experiments. A line heat source is
realized using a thin wire immersed in a liquid filled container and at t ¼ 0 an electrical
current step is used to heat the wire by Joule effect.

In an early study (Duluc et al., 2003), a bronze wire of 20mm radius and 5.1 cm
length has been used and the working fluid was saturated with liquid nitrogen. Since
bronze is thermoresistive, the wire is both a heater and a thermometer. Wire
temperature measured through its electrical resistance has been compared with the
numerical results. Even though the end effects are observed, they are limited to 20
percent of total length near the wire edges. It has been shown that at steady-state, 2D
numerical simulations agree well with the measured temperature at the central section.
Owing to the end effects, however, numerical results of transient natural convection
had not been fully validated.

In order to make a full validation of the present numerical methods, we set-up a new
experiment. A platinum wire of 50mm radius and 5 cm length is immersed in a
rectangular cavity made of plexiglass and filled with distilled water, the cavity
dimensions are of 50 cm £ 7 cm £ 20 cm ðlength £ width £ heightÞ: Experiments are
conducted at room temperature; both temperature in water and velocity field are
measured. Temperature measurements are performed using a K-type thermocouple of
12.7mm diameter and PIV techniques are used to measure the velocity field. In the PIV
set-up, a vertical laser light sheet perpendicular to the horizontal wire, silver coated
hollow spheres of borosilicate glass with smooth surface (diameter of 10mm and
density 1.4) as seeds and a CCD camera of 8 bits (768 £ 484 pixels) are used. Each
recording of transients consists of a series of 600 pictures with a time delay of 1/15 s
between frames and corresponds to 40 s of observation time. Instantaneous 2D velocity
field is obtained from a pair of frames by an original method which is based on optical
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flow algorithm rather than on classical cross-correlation. This method allows a finer
spatial resolution of the velocity field and is more robust against noise.

More details about the experimental set-up and methods can be found in Duluc et al.
(2003) and Quénot et al. (1998).

5. Results and discussions
In this section, we will focus on two cases: permanent natural convection around a
horizontal isothermal cylinder and the experimental case corresponding to transient
natural convection around a line-source. The former is used to assess the numerical
methods and the proposed outer boundary conditions by comparison with other
numerical results (Saitoh et al., 1993 among others) and the latter is used to validate our
numerical methods and outer boundary conditions through experiment.

5.1 Isothermal cylinder: a benchmark problem
For natural convection around an isothermal horizontal cylinder, earlier studies used
Rayleigh number based on cylinder diameter and temperature difference, RaD. In the
present study, the case with RaD ¼ 104 and Pr ¼ 0:7 is investigated in order to show
that the proposed outer boundary conditions work also at high Rayleigh number
regime. Apart from the average Nusselt number on the cylinder surface only
qualitative results on flow structure are presented.

Numerical simulations have been performed with R0 ¼ 24R and in total, eight fluid
sub-domains as shown in Figure 2 have been used. In the azimuthal direction, we used
K ¼ 120 and in each sub-domain 21 Gauss-Lobatto points have been used to discretize
equation (10) in the radial direction.

Starting from motionless flow condition and after the transient, time evolution of Nu
indicates that a quasi-permanent regime is reached normally and that the proposed
outer boundary conditions do not seem to cause any difficulty for numerical procedure
to converge. Flow structure corresponding to the quasi-steady-state indicated by Nu is
shown in Figure 3. One distinguishes the lower part of thermal plume and outside the
thermal plume the incoming flow is downwards, which is somewhat strange and is not
consistent with the flow structure given in Saitoh et al. (1993) by using a very large
computational domain. However, the value of Nu is equal to 4.791, which agrees well
with 4.826 in Saitoh et al. (1993). We kept integrating the quasi-permanent solution and
obtained steady-state solution which is also shown in Figure 3. Outside the thermal
plume the incoming flow is more horizontal but always downwards. Although flow
structure evolved slightly, Nu which decreased only to 4.784 remained almost constant.
This suggests that temperature field is insensitive to flow structure outside the thermal
plume and that using only Nusselt number is not enough to validate flow structure
outside the thermal plume.

In order to assess the validity of the predicted flow structure, i.e. to know where the
predicted flow is reasonable and where it is not, more detailed results of velocity fields
are needed; for example, velocity profiles at fixed x and y positions.

5.2 Transient natural convection around a line-source
In the experiment, a line-source is represented by a platinum wire of 50mm radius
heated by Joule effect. The heating power is Qv ¼ 3:8 £ 109 W=m3 (which is equivalent
to a surface heat flux of q ¼ 9:5 £ 104 W=m2Þ and the room temperature, T0, is equal to
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293 K. If we define a Rayleigh number based on heat flux, Raq ¼ gbqR 4=lnk is very
small value, approximately equal to 0.015.

5.2.1 Comparison between numerical and experimental results. In this subsection, we
will compare in detail the experimental measurements with numerical results to
validate the external boundary conditions (5) and (6) and their numerical
implementations. Numerical simulations have been performed in a computational
domain with R0 ¼ 3:025 cm (<600 R).

As soon as the wire is heated up, water around it is also warmed up through heat
conduction. As warm water tends to move upwards, convective motion sets up and
squeezes circular isotherms and a thermal plume, in the form of a mushroom, for the
temperature field observed. The “mushroom” is growing in time as shown in Figure 4.

The “mushroom” structure of temperature field is induced by the onset of
convection, especially by the set-up of two initial vortices (Figure 4). We can compare
the positions of vortex center, which is below the round top of the mushroom,
calculated from numerical simulations and measured in experiments. The results
obtained are shown in Figure 5, they show a good agreement between the numerical
simulations and experiments. Both results indicate that the vortex centers evolve in
time by following straight lines and the numerical simulations performed seem to
predict reasonably the transient behavior of the thermal plume. From these straight
lines it is easy to determine the virtual source point which is located below the wire and
from which initial vortices are generated. This is quite similar to the idea of virtual
source for steady thermal plume expansion.

It is to note, however, that in numerical simulations when the vortices approach the
external boundary their centers are deviated from the straight lines they followed.
This behavior is not physical and is certainly due to the outer boundary conditions.

Figure 3.
Flow structure

(temperature and stream
function) around an
isothermal cylinder

(quasi-steady-state, left;
permanent regime, right)

RaD¼ 104 and Pr¼ 0.7

Numerical
simulations

841



Therefore, the outer boundary conditions used cannot predict correctly the full
transient process, at least not in the entire computational domain. The important
question to be answered is whether, in the long-run, the boundary conditions proposed
yield reasonable prediction of flow structure. For this purpose, velocity profiles at
t ¼ 16 s are chosen (i.e. the initial vortices are crossing the outer boundary) and
Figure 6 shows the numerical and experimental results at y ¼ 0:5 and 2.5 cm (y is the
height above the wire). Excellent agreement between the experiment and numerical
simulation is observed at y ¼ 0:5 cm: Owing to the fact that the trajectories of the
initial vortices are artificially modified by the outer boundary conditions, at y ¼ 2:5 cm
the discrepancy between the results is important for the horizontal velocity component
while agreement remains good for the vertical velocity component. Although the outer
boundary conditions used influence the trajectories of the initial vortices, long time
flow structure of the thermal plume is correctly predicted by the numerical methods

Figure 4.
Instantaneous velocity
(PIV measurements, left)
and temperature
(numerical results, right)
fields in the same spatial
scale at t ¼ 6 s (top) and
16 s (bottom)
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associated with the outer boundary conditions (5) and (6) implemented in the form of
equations (12) and (14).

The transient process can be illustrated by time evolution of temperature field. The
temperature at y ¼ 0:67 cm above the wire is measured experimentally by a
thermocouple of 12.7mm diameter and also calculated numerically (Figure 7). One
observes again an excellent agreement between the numerical and experimental results.
It takes about 4 s for the mushroom of the thermal plume to grow up to y ¼ 0:67 cm; the
head of the mushroom which is hotter than the surrounding water passes this position in
2 s ð4 s , t , 6 sÞ and then temperature evolves slowly in time to a constant value.

In comparison with the experimental measurements and with regard to the good
agreement observed, we conclude that the outer boundary conditions used are
validated. Note, however, that the experimental configuration investigated
corresponds to a case of very small Rayleigh number (<0.015) and that further
investigation, both numerical and experimental, is needed to validate the outer
boundary conditions (5) and (6) at higher Rayleigh numbers.

Figure 6.
Velocity profiles (vertical

component on top and
horizontal at bottom) at

t ¼ 16 s and y ¼ 0.5 (left)
and 2.5 cm (right)

Figure 5.
Measured and computed

positions of initial vortex
center. Simulations have

been conducted with
R 0 ¼ 3.025 cm
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5.2.2 Influence of computational domain size. In order to understand the influence of
computational domain size on numerical results when using the external conditions (5)
and (6), we performed numerical simulations corresponding to the experimental case
with two other computational domains: R0 ¼ 2:065 cm ¼ R0

2ð<400 RÞ and R0 ¼
1:105 cm ¼ R0

3ð<200 RÞ:
Computations realized with R0 ¼ 3:025 cm ¼ R 0

1 showed that during the transient
the trajectories of the initial vortex centers are deviated from the measured straight
lines when the initial vortices approach the external boundary (Figure 5).
Computational domain size does not modify this conclusion for the three R 0

investigated (Figure 8). This means that for a given R 0 the transient predicted by
numerical simulation for the present experimental case, in a region near R 0 and during

Figure 8.
Influence of computational
domain size on positions
of initial vortex center

Figure 7.
Time evolution of
temperature at
(x, y) ¼ (0, 0.67 cm)
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the period when the initial vortices approach the external boundary, will be different
from that really taking place in an unbounded domain.

To better illustrate the effect of the outer boundary conditions, velocity and
temperature profiles at t ¼ 6 s and at several positions are shown in Figure 9. Time
t ¼ 6 s is the moment when the “mushroom” top is reaching R0

3 and the initial vortices
are crossing this external boundary (Figure 8). The whole set of graphs shown in
Figure 9(a) shows that, at this time, results obtained with R0

1 and R0
2 agree well

independently of the positions, while numerical simulation performed with R0
3 yields

slightly different results. In the last case, the thermal plume in the form of a mushroom
grows faster than it should. This is why at t ¼ 6 s the position of the mushroom top
obtained with R0

3 is above those predicted by the other two simulations (Figure 9(b)).
Consequently, at y ¼ 1 cm the values of temperature and vertical velocity component
calculated with R0

3 are much larger. To some extent the outer boundary conditions (5)

Figure 9.
Profiles of vertical velocity
and temperature at t ¼ 6 s

Numerical
simulations
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and (6) make the transient process faster in the region near R0 during the period when
the mushroom head and the initial vortices cross R0. Nevertheless, it is still safe to say
that at t ¼ 6 s numerical results obtained with R0

3 remain reasonable in the region near
the heating wire, i.e. r , 0:5 cm ð<100RÞ; because a good agreement between the
numerical results is observed in this region (Figure 9(b)).

Figure 7 also shows that, after the mushroom head travels downstream to a given
position, flow field reaches a nearly constant value at this position. It is, thus,
interesting to know if the outer boundary conditions influence these constant values or
more generally long-time behavior of the flow structure. For this purpose, in Figure 10
we will show different profiles of vertical velocity and temperature obtained at t ¼
20 s: The surprising fact is that no matter which R0 used there is always in good
agreement with the numerical results. Therefore, for the case investigated the
long-time behavior of flow field is correctly predicted by numerical simulations even

Figure 10.
Profiles of vertical velocity
and temperature at
t ¼ 20 s
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when one uses a computational domain with R0
3 (about 200 times the wire radius). This

indicates that the outer boundary conditions (5) and (6) do produce, at least for the
experimental case studied, physically meaningful flow structure at long time. Note that
long time means long time after the initial vortices exit the computational domain. It
depends, therefore, on the size of the computational domain. Long time for smaller
computational domains will not be that for larger ones.

As flow conditions at the outer boundary are not disturbed during the initial phase
of transients, computational domain can be considered as infinite and the outer
boundary conditions should have no influence on the numerical results. This means
that no matter which computational domain is used the studied transient can be
divided into three phases: an initial phase, a long time phase (permanent regime in the
computational domain) and the one in between. For the initial and long time phases the
proposed outer boundary conditions predict well the flow structure in the whole
computational domain, while during the phase in between numerical solutions are not
reasonable everywhere in the computational domain. It is, thus, interesting to quantify
the initial phase for a given R0 and assess the smallest region insensitive to the outer
boundary conditions during the phase in between. Figure 11 shows the end of the
initial phase which occurred between 4 and 5 s for R0

3. It is clear that at t ¼ 5 s
numerical solutions obtained with R0

3 are no more reasonable for r . 0:4 cm: In the
same way, the end of the initial phase for R0

2 is observed between 7 and 8 s (Figure 12).

Figure 11.
Profiles of vertical velocity

at x ¼ 0 (top) and y ¼ 0
(bottom); t ¼ 4 s (left) and

5 s (right)

Figure 12.
Profiles of vertical velocity

at x ¼ 0 (top) and y ¼ 0
(bottom); t ¼ 7 s (left) and

8 s (right)
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Scaling of the positions of maximum vertical velocity at x ¼ 0 (above the wire) yielded
an empirical law of 0.35R0 as the end of the initial phase, i.e. as far as the position of the
maximum vertical velocity above the wire at x ¼ 0 does not exceed 0.35R0 the
numerical solutions are likely to be reasonable everywhere in the computational
domain. Figure 12 shows also that during the phase in between the smallest region
insensitive to the boundary conditions for R0

3 is inside the position of maximum vertical
velocity at y ¼ 0 (at the wire level), this also holds for R0

2: Any tolerance of prediction
error will enlarge the smallest region insensitive to the boundary conditions.

The three computational domains used possess a common region which is r # R0
3:

It is interesting to use the three sets of solutions obtained in r # R0
3 in order to obtain

extrapolated solutions which would be independent of domain size. Figure 13 shows
the extrapolated solutions given by using quadratic extrapolation in the common
region at t ¼ 6 and 20 s. As for R0

1, t ¼ 6 s is in the initial phase and solution obtained
with R0

1 is a good prediction of what should happen in an infinite domain, solutions
have been extrapolated to R0 ¼ 800 R:Att ¼ 20 s; quadratic extrapolation has been
done to R0 ¼ 1; 000 R: At t ¼ 6 s; thermal plume of mushroom structure is approaching
the outer boundary at R0

3 and part of initial vortices is out of the computational domain.
It is another form of flow fields shown in Figure 4. At t ¼ 20 s inside R0

3; only the lower
part of the thermal plume is observed and fluid motion is mainly upwards. This is in
qualitative agreement with flow structures shown in Linan and Kurdyomov (1998) for
small Grashof numbers.

6. Concluding remarks
In order to pave the way for numerical simulations of external natural convection
and the corresponding transients, we implemented, for solving the Navier-Stokes
equations under Boussinesq assumption in velocity-pressure formulation, a

Figure 13.
Extrapolated solutions
(temperature and stream
function) in R 0

3 at t¼ 6 s
(left) and 20 s (right)
around a line-source
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numerical code using spectral methods, domain decomposition technique with
Schur complement, projection method (velocity-pressure coupling) and new outer
boundary conditions.

The validation of the code implemented was done through performing experimental
measurements. A thin platinum wire heated by Joule effect has been used in the
experiment to represent a line-source and Rayleigh number investigated, Raq, is about
0.015. During the transient, time evolution of pointwise temperature is measured by
micro-thermocouples and velocity field by PIV. Numerical results agree well with the
experimental data and the code implemented (numerical methods and outer boundary
conditions used) was thus validated.

Numerical simulations were also realized for the experimental case in order to
reveal the influence of computational domain size on numerical results. It is shown
that the proposed boundary conditions (5) and (6) make transient process faster than
it should be when the initial vortices approach the external boundary. It is also shown
that the numerical results obtained at long time in the experimental case predict well
the flow structure in the whole computational domain. No matter which
computational domain size R0 is, the transient of the experimental case, yielded by
numerical simulations using the proposed outer boundary conditions, can be divided
into three phases: the initial phase, the long time phase and the one in between.
During the initial and long time phases, numerical results are reasonable everywhere
in the computational domain. The end of the initial phase is defined by the time when
the vertical position of maximal vertical velocity above the wire at x ¼ 0 exceeds
0.35R0 and the long time phase means long time after the initial vortices exit the
computational domain. During the phase in between, the present numerical results
are not reasonable everywhere: the smallest region which is insensitive to the outer
boundary conditions is inside the position of maximum vertical velocity at y ¼ 0:
This region can be enlarged provided some tolerance of prediction error. If prediction
error can be accepted to some extent, numerical simulation of transient external
natural convection using the proposed outer boundary conditions is feasible because
numerical results obtained are reasonable at least in a region near the line-source
during the entire transient.

It is important to point out that Rayleigh number of the testing case is small, the
proposed boundary conditions (5) and (6) are at least appropriate for low Rayleigh
number cases. Further studies, both experimental and numerical, should be done to
validate these conditions at higher Rayleigh numbers. Nevertheless, in order to show
that the proposed outer boundary conditions work also at high Rayleigh number,
numerical simulations have been done for an isothermal cylinder at RaD ¼ 104 and
Pr ¼ 0:7 and the average Nusselt number along the cylinder surface obtained agrees
well with the results in the literature.

As the position of the outer boundary is chosen to enable numerical simulation of
external natural convection and the flow conditions on such a boundary are unknown,
one cannot expect that numerical simulations undertaken in this way predicts well the
corresponding flow structure everywhere in the whole computational domain.
Numerical prediction has, however, to be reasonable and even good in part of the
computational domain near the heating element. This is observed from the numerical
simulations we performed and should be the rule of validating numerical simulations of
external natural convection.
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